
Belleek: A Call for METAFONT Revival

Richard J. Kinch

TrueTEX Software

6994 Pebble Beach Ct

Lake Worth, Florida 33467 USA

kinch@truetex.com

http://truetex.com

Abstract

Despite the importance of mathematical typesetting to the persistent popularity

of TEX, very few TEX math fonts are available to complement the thousands

of available text typefaces. Developing fonts is a very di�erent enterprise from

programming other software, requiring di�erent tools and di�erent skills, o�ering

little reward in technical innovation, and often requiring a commercial price to

justify the e�ort. To the corpus of public-domain TEX software, we contribute

Belleek, a new set of hand-drawn math fonts to complement Times, published

simultaneously in METAFONT, Type 1, and TrueType formats, and compatible

with the LATEX mathtime package. We describe the di�cult process of creating

such software with a graphical editor, which motivates a second-look at META-

FONT as a practical design tool. We examine Hoenig'sMETAFONT-basedMathKit

software as a paradigm of �tting math fonts to text typefaces, concluding that

METAFONT will become practical only when it gains a visual editor for input and

outline fonts for output.

These issues should be vital to mathematical publishing, because meta-math

fonts will likely be the only economical source for math fonts to complement most

of the universe of text typefaces.

Introducing the Belleek Fonts

Figures 1{3 set forth character-set tables and

sample uses of the Belleek math fonts for use

with Times text. Figure 4 shows various samples

of math-mode usage of the fonts. These fonts

are herewith contributed to the public domain,

with hopes that TEX will thereby gain some small

measure of
exibility to adapt freely to typefaces

other than Computer Modern. The shapes were

hand-drawn using Fontographer 4.1, some as

freehand originals and others by stretching the

Computer Modern generic shape to �t the Times

weight and aspect ratio. The following constraints

and goals guided the crafting of the shapes:

1. The character set, encoding, and metrics

must match the three math fonts underlying

the LATEX mathtime.sty package1, thus

allowing their compatible use with a single

\usepackage{mathtime} command.

2. All characters must harmonize with the visual

style and weight of Times text.

1 Namely, the MathTime fonts mtex, mtsy, and rmtmi.

3. The character shapes must be original designs

in those cases admitting su�cient latitude for

originality, so as to avoid any appearance of

infringement of existing proprietary designs.

4. The math symbol shapes (as opposed to

Greek letters) should follow the general

form of the Computer Modern meta-designs,

to the extent possible while still strictly

harmonizing with Times. This goal is an

experimental excursion into the principle that

a meta-typeface might serve as a basis for

automatic generation of new math fonts.

Creating Belleek by Hand

Knuth said that success with METAFONT would

depend on \collaborative e�orts" between

\artists and programmers" [Knuth 86, ?]. One

wonders if these classes of people ever meet,

because despite the earnest hopes of many, the

elegant, mathematical and linguistic power of

METAFONT has seen little application to font

design, and has not been recently used by the

commercial type-design industry. Taking in hand

once again those beautiful Volumes C and E

Preprint: Proceedings of the 2001 Annual Meeting February 25, 2000 7:57 1001

Richard J. Kinch

/ 0 1 2 3 4 5 6 7 8 9 : ; < = >

? @ A B C D E F G H I J K L M N

O � � � � � � 	
 � �
 � � � �

� � � � � � � � � � � � � � !

" A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z # $ % & '

(a b c d e f g h i j k l m n o
p q r s t u) * x y z • + , - P

Figure 1: Belleek Math Italic (blmi) 10 pt at 600 dots/inch.

� � � ` � a � b c d e f g h i �
j k l m n o p q r s t u v w x y
z � � � � � � ! " # $ % & ' (
) * + , - . / 0 1 2 � 3 4 5 6 7
8 9 : � � ; < = > � 	 � ? @ �

A � � B Aj Aj Aj Aj Aj Aj Aj C D E F G
H I J K L M
 � N O � P Q R � S
T U V W X Y Z [Aj Aj Aj Aj] ^ _ {

ne{Not encoded in font

Figure 2: Belleek Math Symbols (blsy) 10 pt at 600 dots/inch.

b c d e f g h i j k l m n o p q
r s t u v w x y z { | } ~ � � �
� � � � � � 	
 � �
 � � � � �
� � � � � � � � � � � � � ! "
$ % & ' () * + , - . / 0 1 2
3 4 5 6 7 8 9 : ; < = > ? @ A B
C D E F G H I J K L M N O P Q R
S T U V W X Y Z [\] ^ _ ` a �

Figure 3: Belleek Math Extension (blex) 10 pt at 600 dots/inch.

1002 February 25, 2000 7:57 Preprint: Proceedings of the 2001 Annual Meeting

Belleek: A Call for METAFONT Revival

t
"2

"x2 �
"2

"y2

unn	�x � iy�
nn2 � 0

H�n� �
n;

m�2

�tm�1;
k�1

f
�m�k�

p
Lm�kM

gu�1
�
�

p1�n� � lim
m�*

*;
F�0

b
1� cos2m�F!nH�n�

c
�

Let H be a Hilbert space, C a closed bounded convex subset of H , T a
nonexpansive self map of C . Suppose that as n �*, an�k � 0 for each k, and
<n �

3
*

k�0�an�k�1 � an�k�
�� 0. Then for each x in C, Anx �3*

k�0 an�k T k x
converges weakly to a fixed point of T .

A �

�
%%#

a11 a12 � � � a1n
a21 a22 � � � a2n
���

���
� � �

���

am1 am2 � � � amn

�
&&$

<
jo0

t;
ko0

a jk zk
u
�
;
no0

zn

� ;
k0�k1����o0

k0�k1�����n

a0k0a1k1 � � �

�
�

�R

v
a1� a2� � � � � aM

b1� b2� � � � � bN

w
�

R<
n�0

�1� qa1�n��1� qa2�n� � � � �1� qaM�n�

�1� qb1�n��1� qb2�n� � � � �1� qbN�n�
�

=
*

�*

e�x � x dx � TH

X �
;

i

G i "

"xi �
;

j

x j "

" Ax j

Figure 4: Math mode samples (after The TEXbook) using Belleek and Times New Roman, 10 pt at 600

dots/inch.

Preprint: Proceedings of the 2001 Annual Meeting February 25, 2000 7:57 1003

Richard J. Kinch

of Computers and Typesetting, and observing

the erudition therein, one wonders how such

magni�cent engines have seen such little use.

Have METAFONT and Computer Modern become

museum pieces, like some polished-brass steam

engine, impressive to look at, but long since

superceded by higher-powered technology? Or

were they perhaps ahead of their time, and not yet

harnessed to their potential to create?

Whatever its virtues as a �eld of human

endeavor, working with type as software seems

to sti
e one's yearning to abstract and perfect

a physical enterprise in mathematical form.

Instead, it seems to stir the passions for raw,

un-parameterized, bare-handed manipulation of

perimeters. You want to grab a shape like a piece

of hefty rope, not tweeze some bits of code.

Thus fonts are today drawn using

direct-manipulation, CAA (computer-aided

agony) tools that somewhat speed the brutish task

of digitizing and re�ning outlines. Big publishers

have in-house software, and the small-time

designers have GUI software such as FontLab,

Fontographer, and Type Designer.

This author is a true believer in languages

as a means to use computers. In respect of font

design this could hardly be better implemented

than through METAFONT. Yet when it came

to the practical problem of creating a few fonts

in the shortest time, even these near-absolute

principles fell to the expedience of the GUI tools.

It is indeed faster to just click and drag, just

not to be recommended as a steady job, if you

value your sanity. The TEX world would have also

been better o� with a meta-version instead of a

merely-speci�c version.

As miserable as creating font shapes is, the

need to hint fonts for low-resolution use is even

more so. Hinting is like undertaking. One applies

grisly techniques to preserve the corpse from decay

in the presence of trying conditions. Success is

achieved when the casual observer comments on

how natural the result looks. The Belleek fonts are

auto-hinted (let us not carry the grim metaphor

any further). Perhaps someone will have the

ghoulish expertise to do a proper job on them.

Creating Math Fonts Automatically

Alan Hoenig has taken the right approach in his

MathKit [Hoenig 98] and MathInst [Hoenig 98]

packages. In principle we should be able to

program (say, in METAFONT) meta-characters for

math symbols, and �t them automatically (with,

say, METAFONT) to a given text typeface. He

exhibits successful applications of this principle,

instantiating the Computer Modern character

programs with hand-measured characterizations

(x-height, stem widths, etc.) of a few typefaces,

such as Times, Baskerville, Jenson, and Caslon.

Knuth's ancient (in software years) Computer

Modern math symbols seem to have been

endowed with a su�cient amount of meta-ness

to cover a range of target typeface styles. Where

meta-qualties are lacking in Computer Modern

math, the METAFONT programs can be upgraded.

So if there is great demand for TEX to typeset

math in anything-but-Computer-Modern fonts,

why has MathKit not received popular acceptance?

It is not due to any shortcoming in the results, but

rather to the utter mess that TEX (and moreso

LATEX) have made of changing fonts, encoding, and

styles. What a user wants is not a programming

kit containing dozens of components for designing

new fonts, but a single command that says \I

mean to use Goudy, so please just make it so."

Instead, the MathKit approach requires an almost

super-human expertise in TEX, PERL, NFSS, and

not a few other sophisticated tools. This is not

to criticize MathKit for being overly obscure; in

examining its implementation one must admire

the economy and e�ciency it displays. The

source of the complexity is just the nature of the

instantiation task.

The simpli�cation of this daunting complexity

is not as simple as gathering the output of

MathKit for a given typeface into a ready-to-run

package, creating a little archive that the user

can drop in the TDS tree. Because MathKit in

part depends on METAFONT to rasterize fonts,

MathKit must necessarily impose several layers

of scripts and programs to guarantee that, for

example, METAFONT can generate bitmaps for the

fonts in the sizes eventually called-up in the user's

document. METAFONT seems to be the dowdy

aunt who is welcomed at �rst, but then doesn't

know when to leave.

Minimizing the user's task requires something

more, namely conversion of the MathKit

instantiation of the meta-math fonts into scalable

outlines. This reduces the components of a new

style to a few outline font �les, a few TEX virtual

fonts, and some TEX or LATEX macros, all in a

ready-to-run distribution. The key, therefore,

is the ability to convert METAFONT designs to

outlines.

1004 February 25, 2000 7:57 Preprint: Proceedings of the 2001 Annual Meeting

Belleek: A Call for METAFONT Revival

METAFONT: The Flaw

If the ability to convert METAFONT designs to

outlines is key, why has it been lacking? Indeed,

we reach a startling conclusion: METAFONT is

fundamentally
awed, and this
aw has inhibited

its acceptance as a font-design tool, namely:

METAFONT should produce outlines,

not bitmaps, as output!

Con�rming this assertion is the software-tools

philosophy. METAFONT is at heart a language for

the expression of mathematically abstract shapes.

As a properly demarcated tool, METAFONT

should convert that abstraction form to another

abstraction, and do no more and no less. Knuth's

problem with METAFONT in 1982 was that he, his

students, and colleagues were unable to practically

solve the computational-geometry problem of

converting stroked elliptical pens to outlines, and

of overlapping shapes to outlines. Instead he relied

upon rasterization as an expediency [Knuth 86].

Also con�rming this assertion is the existence

and popularity of METAPOST [Hobby 89], which

converts METAFONT code to PostScript code,

something closer to (although still not quite)

outlines. METAPOST works by intercepting

METAFONT's internal data structures before they

are bitmaps. In essence it is taking the proper

output from METAFONT and expressing it in

an intermediate form using the more primitive

PostScript language.

METAFONT: The Redemption

If METAFONT should produce outlines, but Knuth

sidestepped the problem, then what are we to do?

Ask him to try again, but harder? There would

seem to be two routes to getting outlines, instead

of bitmaps, from METAFONT:

Outlines from Overlapping Shapes

METAPOST converts METAFONT code to

PostScript code, expressing the same overlapping

shapes in a more primitive geometric form.

MetaFog [Kinch 95] �rst exhibited a practical

solution to the further task of reducing

overlapping, stroked PostScript shapes to

non-overlapping outlines. We are tantalizingly

close to a \MetaFog 2" that completes the

theoretical solution and implements it in robust

form. This would allow fast and complete

conversion of METAFONT code to non-overlapping

outlines, such as are required for outline font

formats.

Proper Outlines from Curve-Fitting

Polygons or Bitmaps The MetaFog

research attempts to solve a generalization of

an already-solved problem, that of removing

overlaps in polygons or bitmaps. If we

convert the overlapping METAFONT shapes

to polygons or bitmaps, then we can apply

well-understood algorithms to compute the

equivalent non-overlapping polygons or bitmaps.

Indeed, in the bitmap domain we have merely

described what METAFONT now does, namely,

it computes a single bitmap resulting from the

rasterization of any number of overlapping shapes.

If we consider a polygon (or bitmap) as a

digital sampling of an underlying analog shape,

then it would appear consistent with sampling

theory that the band-limited analog shape

underlying the polygon (or bitmap) should

be recoverable, given that we have su�cient

resolution and absence of noise in the polygon

coordinates (or bitmap pixels). This \given"

is assured in the case of METAFONT, since we

can scale its output noiselessly to any desired

resolution.

While there are many published algorithms

for practical curve-�tting of bitmap edges

(\autotracing") [Schneider 90], none attempts the

possibility of recovering the exact mathematcial

curves underlying a noiseless rasterization such as

METAFONT generates. (The typical application

tries to �t approximating curves to a noisy scan of

an irregular physical object). In this matter, this

author is again tantalizingly close to a curve-�tter

that will solve the problem and implement it in

robust form. Among other wonderful applications,

this would allow conversion of METAFONT shapes

to outlines by \mere" curve-�tting.

Other Meta-Design Formats Besides

METAFONT, there are other formats for specifying

some degree of meta-design to typefaces, such

as the multiple master extension to Type 1.

But none of these match the potent ability of

METAFONT to express meta-ness in far more

sophisticated ways than mere linear interpolation.

Linear interpolation may be su�cient for a limited

range of variation, such as stem weight, slant,

or even the presence or absence of serifs. But

the non-linear and programmatic possibilities

of METAFONT provide a much wider range of

possible variations; and still more powerful is

METAFONT's ability to stroke and overlap shapes.

On the other hand, some anecdotal experience

has resulted in failures when attempting

Preprint: Proceedings of the 2001 Annual Meeting February 25, 2000 7:57 1005

Richard J. Kinch

satisfactory METAFONT designs [Siegel 90].

One lesson from such experience is that a single

meta-character is not necessarily able to represent

wildly di�erent characteristics, particularly as

might vary in letters. In the case of nearly all

non-letter math symbols, however, one can expect

that the possibilities of variation are restricted

enough to permit meta-characterization to a

degree su�cient to cover a wide range of text

typefaces. It might be necessary to produce

di�ering math meta-characters for serif versus

sans-serif typefaces, or other gross variations;

indeed this was the e�ect of many of Knuth's

conditionals in Computer Modern.

The Future: TEX, and the Web

The future of math publication, whether in

TEX or on the Web, will depend in part on the

variety of math fonts available. It would appear

inevitable that math fonts will always lag seriously

behind text fonts, if creation of quality math

fonts necessarily involves manual design. The

present tools for meta-font design su�er from a

fundamental
aw in that they cannot produce

parametric output, only bitmaps. This approach

is impractical, if for no other reason than it

necessarily involves intractible complications for

users, who cannot be expected to deal with the

vagaries of bitmapped fonts.

The tasks of de�ning font encodings,

building a symbol inventory, designing meta-math

programs, and writing style-switching code are all

substantial, yet well-understood. None of those

problems will ultimately impede the adoptions of

TEX, HTML, or any other markup language. They

involve complicated details which can be managed

by the experts and well-hidden from the user.

It is therefore our conclusion that:

� Quality math meta-fonts will be crucial

to success in math publishing, because

hand-drawn shapes are too costly.

� Implementing quality meta-fonts reduces to

two fundamental problems:

{ A language for meta-design, which

we believe is superbly extant in the

METAFONT language.

{ A processor for that language which

can produce non-overlapping outlines.

This requires solving one of two open

research problems: topological analysis

of stroked, overlapping shapes; and

exact curve-�tting of arbitrary-resolution

rasterizations.

References

[Hobby 89] Hobby, John D. \A

METAFONT-like System with

PostScript Output." TUGboat 10

(4), pp. 505{512, 1989. See also the

software on CTAN.

[Hoenig 98] Hoenig, Alan. \Hundreds

of New Math Fonts with

MathKit (version 0.7)." CTAN

fonts/utilities/mathkit.

[Hoenig 98] Hoenig, Alan. \The MathInst

Package (version 0.8): New

Math Fonts for TEX." CTAN

fonts/utilities/mathinst.

[Kinch 95] Kinch, Richard J. \MetaFog:

converting METAFONT shapes

to contours." TUGboat 16 (3),

pp. 233{243, 1995. Current version

available with TrueTEX.

[Knuth 86] Knuth, Donald E. The

METAFONTbook. Addison Wesley,

Reading MA, 1986.

[Knuth 86] Knuth, Donald E. METAFONT:

The Program, Section 524,

\Elliptical Pens". Addison Wesley,

Reading MA, 1986.

[Schneider 90] Schneider, Philip J. \An algorithm

for automatically �tting digitized

curves." In Graphics Gems,

Andrew S. Glassner, editor,

pp. 612{626 and 797{807.

Academic Press, Cambridge MA,

1990. See also the on-line archives

at http://www.acm.org.

[Siegel 90] (\Illuminating little booklet" by

Dave Siegel on negative experience

attempting to metafont-ize

the Euler font at Stanford,

cited by Berthold Horn in

news://comp.fonts ca. Aug

1997.)

1006 February 25, 2000 7:57 Preprint: Proceedings of the 2001 Annual Meeting

