1. INSPECTION UPON UNPACKING .. 1
2. SAFETY PRECAUTIONS ... 2
3. APPEARANCE AND NAMES OF PARTS 6
4. INSTALLATION ... 7
5. WIRING ... 9
6. ADJUSTMENTS AND SETTINGS ... 14
7. OPERATION .. 20
8. PROTECTION FUNCTION .. 24
9. BEFORE ASSUMING A MALFUNCTION HAS OCCURRED 27
10. MAINTENANCE AND INSPECTION 29
11. SPECIFICATIONS .. 34
1. INSPECTION UPON UNPACKING

Before installation and wiring, be sure to check the following:

(1) Make sure that there is no damage from transporting the unit.

(2) After unpacking the unit, make sure that the package contains one inverter and one operation manual.

(3) Make sure that the product is the one you ordered by checking the specifications label on the front of the cover.
2. SAFETY PRECAUTIONS

2.1 Input voltage

(1) Make sure that the input voltage is:
 three-phase 200 to 240 V, 50 Hz/60 Hz

(2) Be sure to install a circuit breaker to protect the wiring.

2.2 Installation locations and surfaces

(1) Avoid installing this unit in locations which are subjected to high temperatures, high humidity, and dew condensation. Also avoid locations exposed to dust and dirt, corrosive gases, coolant mist. The installation location should be a well-ventilated room which is not exposed to direct sunlight.

(2) Be sure to install the unit on a perpendicular wall which is not subjected to vibrations.

(3) The installation wall should be made of steel sheeting or other nonflammable material.
2.3 Do not connect the power supply to the output, this wrong connection damages the inverter.

2.4 Do not touch the interior of the inverter or put rods or other objects inside it when power is being applied. Such action can lead to electrocution and can cause malfunctions.

2.5 When operating a general-purpose motor at a high frequency exceeding 60 Hz, be sure to confirm the allowed rotational speed of the motor and machine with the manufacturers.

2.6 Withstand voltage tests and insulation resistance tests (megger tests) are executed before the units are shipped, so that there is no need to conduct these tests before operation. When conducting megger tests as a part of daily inspection, be sure that these tests are only executed between the main circuit and grounding. Do not execute megger tests on the control circuit.
2.7 Do not attach or remove wiring and connectors when power is being applied. Also, do not check signals during operation.

2.8 Do not stop operation by turning on and off the electromagnetic contactors on the primary and secondary sides of the inverter.

Even if there is a short power failure, if an operation instruction has been given, then the unit may restart operation after the power failure has ended. If there is a possibility that such occurrences may harm humans, then install an electromagnetic contactor (Mgo) on the power supply side, so that the circuit does not allow automatic restarting after the power supply recovers. If the optional remote operator is used and the retry function has been selected, this will also cause automatic restarting if an operation instruction has been input, so please be careful.

2.9 Do not insert phase advance capacitors or surge absorbers between the output terminals of the inverter and the motor.
2.10 Be sure to ground any grounding terminals.

2.11 When inspecting the unit, be sure to wait for 30 seconds after turning the power supply off before opening the cover.

(The internal capacitor will have residual voltage which is dangerous.)
3. APPEARANCE AND NAMES OF PARTS

- Operation panel
- Digital frequency display
- Frequency setter
- Connector for the remote operator
- POWER lamp
- Alarm lamp
- Potentiometers
- Control circuit terminals
- Grounding terminal
- Installation holes
- Cover
- RUN/STOP switch
- DIP switches
- Logic printed-circuit board
- Main circuit printed-circuit board
- Main circuit terminals
- Terminal cover
4. INSTALLATION

For cooling purposes, be sure that the inverter is installed vertically. In addition, be sure that it is separated from other components and walls. If foreign matter is introduced to the interior of the inverter, this may cause malfunctions, so make sure that no foreign matter can enter it.

Be sure that the wall surface is a nonflammable material, such as steel sheeting.
At wiring work or other work, do not enter the wire scraps, welding fragment, iron scraps, dust, etc. into the inverter, so be sure to cover the top of the inverter with a cover or others before working.

Cover (Nonflammable material such as steel sheeting)

When installing the inverter in a box, be sure to remove the terminal cover.

Be sure to note the ambient temperature (-10 to 40°C).
(Up to 50°C with the terminal cover removed.)

The higher the ambient temperature of the inverter, the shorter its usable life will be. If there is a heat generating unit near the inverter, try to keep it as far away as possible. Also, when installing the inverter in a box, be sure to carefully consider ventilation and the dimensions.

Inverter losses: 5% of the nominal power of the inverter
The terminal board will be exposed when the terminal cover is removed. Wire the inverter in this state.

5.1 Wiring the power supply and motor

The inverter will be damaged if the power supply is connected to the motor terminals U, V and W, so be sure not to make any mistakes.
Note 1: The inverter does not have any facilities to protect humans from leak. If necessary, install a leak circuit breaker. (Select a circuit breaker with a large high frequency sensitivity current.)

Note 2: Be sure that the specified grounding is executed. Be sure to separate the grounding pole from those of other heavy electric machinery, and avoid using common grounding poles.

If multiple inverters are used, make sure that the grounding connections do not create a loop.

5.2 Control circuit terminal wiring

Inverter (SF2 type) provided with operation panel

RUN switch is connected to forward run terminal (FW). To change it to reverse run, change the wire from FW to RV terminal.

Note 1: Do not connect an external frequency setter. Inverter may be damaged by the connection.

Note 2: If the frequency is set by an external signal, remove the wiring of 0 terminal and insulate the removed wire.
Inverter (SB2 type) without operation panel

- Attach a surge absorbing diode in parallel to the relay
- The fault alarm is ON under normal conditions, and OFF under abnormal conditions. (OFF when the power supply is off.)

Note 1: When a frequency arrival signal is used, be sure to install a surge absorbing diode in parallel with the relay. Otherwise, the surge voltage created when the relay goes ON and OFF may damage the AR output circuit.

Note 2: Use a twisted and shielded wire for the signal line, and cut the shielded covering as shown in the diagram below. Make sure that the length of the signal line is 20 meters or less. If the line must be longer than 20 meters, please use the VX application control device RCD-A (remote control device) or CVD-E (insulated signal converter).

Insulate

No grounding necessary

Connect to terminal L of the inverter.
Note 3: When the frequency setting signal is turned on and off with a contact, use a relay which will not cause contact malfunctions, even with the extremely weak currents and voltages of crossbar twin contacts, etc.

Note 4: Use relays which do not cause contact defects at DC 12V, 3 mA for the other terminals.

Note 5: Separate the main circuit wiring from the relay control circuit wiring. If they must cross, be sure that they cross at a right angle.

Note 6: Terminal 2CH, AR, CF1 and CF2 are described below.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Terminal function</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CH</td>
<td>When 2CH-L is turned ON, the preset second acceleration/deceleration time will be used. When 2CH-L is not ON, this time will depend on the potentiometer adjustment on the printed circuit board.</td>
<td>Acceleration/deceleration 1 second</td>
</tr>
<tr>
<td>AR</td>
<td>When the set frequency is attained, AR-COM will go to the low level.</td>
<td>When the setting is attained this goes ON. ON: Setting ±0.5 Hz OFF: Setting ±1.5 Hz</td>
</tr>
</tbody>
</table>
| CF1 | CF1-L ON: First speed
 CF2-L ON: Second speed
 CF1/CF2-L simultaneously ON: Third speed | First speed: 5 Hz
 Second speed: 20 Hz
 Third speed: 40 Hz |
| CF2 | |

The remote operator (optional) can be used to change a setting.
6. ADJUSTMENTS AND SETTINGS

6.1 Adjusting acceleration/deceleration time

Acceleration/deceleration time from minimum to maximum frequency is adjusted with the potentiometers on the printed circuit board.

[Approximately 5 seconds when the unit is shipped from the factory; 3 on the scale.]

* Adjustment range: 0.2 to 30 seconds

Shows an example of 3 on the scale.
6.2 Setting the V/F pattern (maximum frequency)

The V/F pattern is set with DIP switch DS1.

When shipped from the factory, the unit is set to rated torque characteristics at a maximum frequency of 60 Hz.

* When reduced characteristics are necessary, set switch 4 of DS1 (V/F) to the VP side.

Note:
Do not change the DIP switches during operation.
6.3 Frequency reference signal

DIP switch DS2 can be used to switch the frequency setting voltage between 0 to 5 V and 0 to 10 V.

<table>
<thead>
<tr>
<th>Setting voltage</th>
<th>DS2 setting position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0~10 V</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>0~5 V</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Setting when the unit is shipped from the factory.

6.4 DS2 and other settings

In addition to the settings described in section 6.3, DIP switch DS2 can be used to set the following.
6.5 Adjusting monitoring frequency (potentiometer M.ADJ)

When the frequency monitor signal is changed from for the digital frequency meter to for the analog frequency meter by the optional remote operator, this can adjust the analog frequency meter connected between terminals FM-L.

Turning the potentiometer clockwise will cause the frequency meter to move drastically.

When shipped from the factory, the 1 mA 10 V full-scale (even scale) frequency meter is adjusted to indicate the maximum value.

Note 1: Because the signal between FM-L is duty controlled by a pulse signal, the indicated value may vary slightly depending on the type of meter or the wiring distance.

6.6 Jogging Operation

After 2CH-L and CF1 are on, FW-L or RV-L will cause operation.

<table>
<thead>
<tr>
<th>2CH</th>
<th>CF1</th>
<th>H</th>
<th>O</th>
<th>L</th>
<th>FW</th>
<th>RV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard setting when shipped from the factory.

First speed: 5 Hz

First speed (CF1) is used as the jogging frequency.
Time T will change according to the selection of the maximum frequency.

<table>
<thead>
<tr>
<th>Maximum frequency (Hz)</th>
<th>50, 60</th>
<th>100, 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time T (seconds)</td>
<td>Approximately 0.1</td>
<td>Approximately 0.05</td>
</tr>
</tbody>
</table>

- When FW(RV)-L is OFF, the motor will not go to free running.
- The remote operator is necessary to change time T and the jogging frequency 5 Hz.

6.7 Multi-speed operation

<table>
<thead>
<tr>
<th>CF2</th>
<th>CF1</th>
<th>H</th>
<th>O</th>
<th>L</th>
<th>FW</th>
<th>RV</th>
<th>RS</th>
<th>L</th>
</tr>
</thead>
</table>

VRO (FS setting)

Standard setting when shipped from the factory.

First speed: 5 Hz
Second speed: 20 Hz
Third speed: 40 Hz

First speed: SW1 ON
Second speed: SW2 ON
Third speed: SW1/SW2 ON simultaneously
FS setting: Arbitrarily set by VRO

The remote operator is necessary to change first, second and third speeds.

6.8 Making settings with the remote operator (optional)

Even more functions can be set by using the remote operator or copy unit. If this is necessary, see item 12. (The list of functions is shown.)
7. OPERATION

7.1 Before starting operation

Prior to the test run, check the following.

(1) Make sure that the power lines (input power supply R, S, T, and output terminals U, V and W) are connected correctly.

(2) Make sure that there are no mistakes in the signal line connections.

(3) Make sure that the inverter case grounding terminal (\oplus) is grounded.

(4) Make sure that terminals, other than the grounding terminal, are not grounded.

(5) Make sure that the inverter is installed on a wall. Also, make sure that the wall surface is an nonflammable material, such as steel sheeting.

(6) Make sure that there are no short-circuits caused by stray pieces of wire, solderless terminals or other objects left from wiring work. Also, make sure that no tools have been left behind.

(7) Make sure that there are no short-circuits or ground-faults in the output wiring.

(8) Make sure that there are no loose screws or terminals.

(9) Make sure that the maximum frequency setting matches the machine specifications.

Be sure to refer to page 30 when conducting insulation resistance tests and withstand voltage tests. Never test terminals other than those which are indicated.
Check the following after the test run is complete.

- Was the rotational direction of the motor correct?
- Was the inverter tripped during acceleration or deceleration?
- Were the rotational speed and frequency meter correct?
- Were there any abnormal motor vibrations or noise?

When overcurrent tripping or overvoltage tripping occur during the test run, increase the acceleration time or deceleration time.

Note that when forward and reverse operation are ON at the same time, that the unit will stop.

When shipping from the factory:

<table>
<thead>
<tr>
<th>Maximum frequency: 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward operation</td>
</tr>
</tbody>
</table>
8. PROTECTION FUNCTION

In order to protect the inverter there are various protection functions for overcurrents, overvoltages, undervoltages, etc. When these functions are activated, the inverter output is cut off, and the motor will run freely. In addition, these conditions are maintained until forced resetting is executed.

<table>
<thead>
<tr>
<th>Protection name</th>
<th>Display</th>
<th>Content</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| Over-current | ![ALARM](image) Continuously ON | A large current has flowed through the inverter.
- Short-circuit or ground-fault on the output side.
- Motor shaft has locked.
- Acceleration or deceleration time is too short.
- The input or output contactor has been turned ON/OFF. | By using the remote operator (optional), overcurrents during acceleration, deceleration and operation can be identified separately.
Ground fault damages the inverter. |
| Over-voltage | ![ALARM](image) ON: 5 seconds OFF: 5 seconds
![OV R-OH](image) Continuously ON | Regenerative energy from the motor has caused the voltage of the DC bus intermediate circuit to increase.
- Acceleration/deceleration time is too short.
- Input line voltage is too high.
- Load GD² is too large.
- Overhauling load.
- A run signal has been sent while the motor was running freely.
- There are any large sources of electrical noise.
(During CPU errors) | Sometimes during deceleration an overvoltage and overcurrent will be generated at the same time. In such cases, the ALARM LED may be on continuously. When the power supply is turned on when the unit is in the reset signal input (RS-L: closed) state, OV/R-OH will light. In this case, release reset. When there is a CPU error, OV/R-OH will go out. |
<table>
<thead>
<tr>
<th>Protection name</th>
<th>Display</th>
<th>Content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under-voltage</td>
<td></td>
<td>Low input line voltage
 - The incoming line voltage is too low.
 - Momentary power failure or voltage fluctuation.
 - There are any loose or disconnected terminals.</td>
<td></td>
</tr>
<tr>
<td>Overload</td>
<td></td>
<td>An overload current flowed through the inverter output for a certain amount of time.
 - Motor overload by the driven equipment
 - Over motor rating vs output current rating of inverter.</td>
<td>Electronic thermal characteristics (Note 1)
 Output current (I)
 Output frequency (Hz)
 Electronic thermal-to-frequency characteristics
 Time (seconds)

 Output current (I)
 When shipped from the factory, the electronic terminal characteristics are set to a level of:
 Rated output current of inverter x 0.9.</td>
</tr>
<tr>
<td>Storage element error</td>
<td></td>
<td>End of the life of the data storage element has been reached.</td>
<td>Replace defective inverter.</td>
</tr>
</tbody>
</table>

Note 1: When you wish to change this with the current value of the motor, or when you wish to change the electronic thermal-to-frequency characteristics to constant torque, the changes must be made with the optional remote operator.
• When an fault is generated, alarm signal will be output to terminals ALO and AL1.

Normal power-on status

Alarm signal output during power-on. This is also the status when the power supply is cut off.

• Saving alarm signals

When the inverter input power supply is cut when alarm signal is being output, the alarm signal cannot be saved because the inverter control power supply is turned off. If you wish to save the alarm signal, the signal should be sent to an external sequence, then after they are saved the inverter power supply should be turned off. After power is reapplied, the remote operator (optional) can be used to check the contents of the fault.

• Resetting

Reset by either short-circuiting terminals RS-L of the printed-circuit board, or turning OFF the input power of the inverter.
9. BEFORE ASSUMING A MALFUNCTION HAS OCCURRED

If your problem persists even after checking the following table, contact your sales agent or your nearest servicing station. In such cases, be sure to have (1) the model, (2) the production number, (3) the malfunction symptoms, (4) the purchase date, and other pertinent information at hand.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Probable cause</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The motor will not run.</td>
<td>The inverter outputs U, V and W are not supplying voltage.</td>
<td>Is the input power supply to inverter terminals S1, S2, T being supplied? If it is, the POWER lamp should be on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the ALARM lamp on?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Is operation instruction RUN ON?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Is terminal FW (or B) connected to terminal L?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Has the frequency meter (potentiometer) been turned clockwise?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Are the printed-circuit board terminals U, V and L connected to the potentiometer?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Has reset been left ON? If the power supply is applied with the reset signal being input, OV/R-ON will light.</td>
</tr>
<tr>
<td>Inverter outputs U, V and W are supplying voltage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Has the motor seized or is the load too great?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The optional remote operator is used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Are the operational settings between the remote operator and inverter unit correct?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The rotational direction of the motor is backwards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Are the connections of output terminals U, V and W correct?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Is the phase sequence of the motor forward or reverse in respect to U, V and W?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>. Are the terminals on the printed-circuit board correct?</td>
</tr>
<tr>
<td>Symptom</td>
<td>Probable cause</td>
<td>Countermeasure</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>The rotational speed of the motor will not increase.</td>
<td>* After checking the wiring of the frequency setter, the rotational speed still does not increase when the setter is turned.</td>
<td>Replace the frequency setter.</td>
</tr>
<tr>
<td></td>
<td>* Are terminals CF1-L and CF2-L ON?</td>
<td>Turn off CF1 and CF2. (When CF1 and CF2 are fixed at a given frequency, the speed reference signal will be invalid.)</td>
</tr>
<tr>
<td></td>
<td>Is load too great?</td>
<td>Decrease the load.</td>
</tr>
<tr>
<td></td>
<td>* When the load is too great, the limiting function will be activated, so that the rotational speed will be lower than the setting.</td>
<td></td>
</tr>
<tr>
<td>Rotation is unstable.</td>
<td>* Is the fluctuation in load too great?</td>
<td>Increase the capacity. (Both for the motor and inverter.)</td>
</tr>
<tr>
<td></td>
<td>* Is the power supply voltage fluctuating?</td>
<td>Decrease the fluctuation.</td>
</tr>
<tr>
<td></td>
<td>* Is some peculiar frequency causing?</td>
<td>Change the output frequency slightly.</td>
</tr>
<tr>
<td>The rotational speed of the motor does not match the inverter.</td>
<td>* Is the maximum frequency setting correct?</td>
<td>Check the V/F pattern against the motor specifications.</td>
</tr>
<tr>
<td></td>
<td>* Are the number of motor poles, the gear ratio, and pulley ratio correct?</td>
<td>Check the speed-change ratio.</td>
</tr>
</tbody>
</table>
10. MAINTENANCE AND INSPECTION

10.1 Maintenance and inspection precautions

(a) Be sure to turn off the power supply during maintenance and inspection.

(b) After the power supply has been turned off, start maintenance and inspection after 30 seconds or more since the POWER lamp on the printed-circuit board has gone out. (Immediately after the lamp has gone out, there will be a residual voltage of about DC 50 V in the DC bus intermediate circuit.)

(c) When removing connectors, never pull the wires.

(d) Take special care not to mistake connections.

General precautions

Always keep the unit clean so that dust or other foreign matter does not enter the inverter. Take special care in regard to breaking lines and connection mistakes. Firmly connect terminals and connectors. Keep electronic equipment away from moisture and oil. Dust, steel filings and other foreign matter can damage insulation, causing unexpected accidents, so take special care.

10.2 Inspection items

(1) Daily inspection

(2) Periodic inspection (Approximately once a year)

(3) Insulation resistance tests, withstand voltage tests
Conduct these tests by short-circuiting the terminals as shown below, and by following the conditions described.

- In regard to insulation resistance tests, measure the terminals below and the grounding at DC 500 V meggers, and make sure that 5 M-ohms or greater is indicated.

- In regard to withstand voltage tests, impress the terminals below and the grounding with AC 1500 V for one minute, and make sure that there are no abnormalities.

- Do not conduct insulation resistance tests and withstand voltage tests for terminals other than those indicated below.

![Insulation Resistance Tests and Withstand Voltage Tests](image)

Note 1: If the inverter is used under high temperature and heavy load conditions, its operating life will be significantly reduced. Also, if the inverter has been stored for three years or more, apply rated input voltage for about five hours.

Note 2: Precautions in handling printed-circuit boards.
When maintenance and inspection of printed-circuit boards is necessary, be sure to follow the precautions below.

- Preventing damage caused by static electricity. The MCUs and ICs on a printed-circuit board can be destroyed by static electricity, so be sure to ground work benches, soldering irons, and yourself before working on a printed-circuit board.
We also recommend that spare inverters are prepared to reduce the amount of down time.
Note 3: Be careful of the following conditions because the converter module may be damaged.

- When the power supply capacity is ten times that of the inverter, and it is 500 kVA or greater.

- When a drastic power supply voltage change is generated.

Examples:

- When multiple inverters are connected to a short bus.
- When a phase advance capacitor is turned on/off.

In the cases above, we recommend inserting a reactor of about 3 percent (voltage drop at the rated current) of the power supply voltage on the power supply side.
11. SPECIFICATIONS

11.1 Block diagram

Diagram showing the circuitry with various components and labels.

Description of Symbols:
- DM: Diode module
- CB: Smoothing capacitor
- CT: Fault alarm relay
- ZNR: Surge absorber
- SH: Shunt resistor
- CT: Current transformer
- RS: Current limiting resistor
- PM: Power module
<table>
<thead>
<tr>
<th>Inspection location</th>
<th>Inspection item</th>
<th>Inspection content</th>
<th>Inspection cycle</th>
<th>Inspection method</th>
<th>Criteria</th>
<th>Standard replacement period</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smoothing capacitor</td>
<td>(1) Check for leaking</td>
<td>Daily</td>
<td>Visual inspection of (1) and (2).</td>
<td>No abnormalities in (1) and (2).</td>
<td>-</td>
<td>Capacity meter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Check for swelling</td>
<td>Periodic</td>
<td>(3) Measure with a capacity meter.</td>
<td>(3) 85% of more of rated capacity.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Measure the static electricity capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relay</td>
<td>(1) Check for shuttering noise when operating</td>
<td>Daily</td>
<td>(1) Dural inspection.</td>
<td>(1) No abnormalities.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistor</td>
<td>(1) Check for large cracks and change in color</td>
<td>Periodic</td>
<td>(1) Visual inspection.</td>
<td>(1) No abnormalities.</td>
<td>-</td>
<td>Tester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Check for line breaks.</td>
<td></td>
<td>(2) Remove the connections on one side and measure with a taster.</td>
<td>(2) The difference must be within ±10% of the indicated resistance value.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central circuit</td>
<td>Operation check</td>
<td>Daily</td>
<td>(2) Sequence protection operation test, and make sure that there are no errors in the protection and display circuits.</td>
<td>(1) No abnormalities</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection circuit</td>
<td></td>
<td>Periodic</td>
<td>(2) Simulate operation of the inverter protection circuit.</td>
<td>(1) Within ±2 voltage difference between phases.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Operate without any abnormalities.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Component check, including printed-circuit boards</td>
<td>Over-all</td>
<td>Daily</td>
<td>Visual inspection</td>
<td>No abnormalities</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) No abnormal odor or changes in color.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) No significant corrosion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Component</td>
<td>No fluid leakage or deformation.</td>
<td>Daily</td>
<td>Visual inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.2 Standard specifications (200 V class PWE series)

<table>
<thead>
<tr>
<th>Model designation</th>
<th>with operation panel</th>
<th>-0.5 kA</th>
<th>-1.0 kA</th>
<th>-2.0 kA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without operation panel</td>
<td>-0.5 kA</td>
<td>-1.0 kA</td>
<td>-2.0 kA</td>
</tr>
</tbody>
</table>

Protective structure
- Open type (IP00)

Maximum motor size (AP, HP)
- 3/4
- 1.5
- 2

Maximum capacity (kVA)
- 220 V
 - 1.0
 - 1.7
 - 2.6

Rated input AC voltage (V)
- Single-phase 100 ~ 230 ±10%, 240 ±5~±10% 50/60 Hz ±2%

Rated output voltage (V) (Note 1)
- Three-phase 200 ~ 240 (Corresponds to input voltage.)

Rated output current (A)
- 3.0
- 5.0
- 7.5

Control method
- Sine wave PWM method, voltage control method

Output frequency range
- 1 ~ 120 Hz (0.3 Hz starting) (To 160 Hz when using the remote operator.)

Frequency accuracy
- ±0.3% of the maximum frequency (±10°C)

Frequency setting resolution
- 0.2 Hz/50 Hz, 0.15 Hz/60 Hz, 0.4 Hz/100 Hz, 0.3 Hz/120 Hz

Voltage/Frequency characteristics
- 8 types (constant torque, and reduced torque individually set.)
 - (Forty-eight types up to 360 Hz when using the remote operator.)

Overload current capacity
- 150%, 60 seconds (once every ten minutes)

Acceleration/deceleration time
- 0.2 to 30 seconds, individually set (individually setting between 0.1 to 200 seconds possible when remote operator is used.)

Torque boost
- (When remote operator is used, setting of manual boost and automatic boost possible.)

Starting torque (Note 2)
- Approximately 70% or more (100% or greater when remote operator used.)

Braking torque
- Regenerative braking (Note 3)
 - Feedback to capacitor
 - Approx. 10% (200V 50 Hz)
 - Approx. 20% (200V 60 Hz)
 - Approx. 70% (200V 50 Hz)
 - Approx. 30% (200V 60 Hz)

Voltage injection braking
- When operation instructions are OFF, braking at 0.5 Hz or less. No braking when speed reference voltage is OFF. (When the remote operator is used, starting frequency, time, etc. can be set.)

Input Signals
- Frequency setting
 - Operation panel
 - Settings with the potentiometer.
 - External signals
 - DC 0 ~ 5 V, 0 ~ 10 V (Input Impedance 10 k-ohms, 20 k-ohms, respectively.)
 - Potentiometer: 500 ohms to 2 k-ohms

- Forward/reverse operation, stop
 - Operation panel
 - RUH / STOP switch (The forward operation (FU) when shipped from the factory)
 - External signal
 - Forward operation/stop (1a contact), reverse operation/stop (1a contact) simultaneously ON equals stop.

- Multi-speed operation
 - Maximum four speeds. First speed, 5 Hz; second speed, 10 Hz; third speed, 20 Hz (Can be arbitrarily set when using the remote operator.)

- Second acceleration/deceleration
 - 1 second (Second acceleration/deceleration time instructions. Individual setting between 0.1 to 300 seconds possible when using the remote operator.)

Reset
- Fault reset, output immediately cut off (1a contact instruction)
<table>
<thead>
<tr>
<th>Output signals</th>
<th>Frequency arrival signal (Note 4)</th>
<th>On when frequency attained (open collector output) (arbitrary attained frequency can be set when using the remote operator.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency monitoring</td>
<td>Digital frequency meter (Monitoring with analog meter: Note 5).</td>
</tr>
<tr>
<td></td>
<td>Fault alarm contact</td>
<td>Off when inverter abnormal (On when normal, Off when power supply cut off.)</td>
</tr>
<tr>
<td>Other characteristics</td>
<td>When the optional remote operator is used: Frequency maximum/minimum limits; maximum frequency adjustment; motor operation speed adjustment; electronic thermal level adjustment; net bias gain; output frequency display; motor rotational speed display; output current display; output voltage gain adjustment; frequency conversion setting; error display; reset function (returns when tripped as overcurrent, undervoltage).</td>
<td></td>
</tr>
<tr>
<td>Protection functions</td>
<td>Undervoltage, overvoltage, overcurrent, overvoltage, overload, output short-circuit, overload limit function, electronic thermal (Note 6).</td>
<td></td>
</tr>
<tr>
<td>General specifications</td>
<td>Ambient temperature (Note 7)</td>
<td>-10 to 40°C (-10 to 90°F when cover removed.) (Storage temperature -10 to 60°C.)</td>
</tr>
<tr>
<td></td>
<td>Humidity</td>
<td>20 to 90% RH (no dew condensation)</td>
</tr>
<tr>
<td></td>
<td>Vibrations</td>
<td>0.5G (10 - 55 Hz)</td>
</tr>
<tr>
<td></td>
<td>Operation location</td>
<td>1,000 meter or less altitude, indoors (no corrosive gas or dust)</td>
</tr>
<tr>
<td></td>
<td>Paint color</td>
<td>Black</td>
</tr>
<tr>
<td>Options</td>
<td>Remote operator</td>
<td>Digital operation/setting unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote control operator 1 meter/3 meters (DOP-LEA, DOP-3EA)</td>
</tr>
<tr>
<td></td>
<td>Digital operation/setting unit</td>
<td>Reading and transfer of setting data, 1 meter (DOP-LEA)</td>
</tr>
<tr>
<td>Estimated mass (lb)</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Note 1: The output voltage will decrease if input voltage decreases.

Note 2: If starting torque is insufficient, it can be set with the remote operator.

Note 3: Without a regenerative braking circuit. This is an example for the Hitachi standard four-pole motor. This may change depending on the motor.

Note 4: DC 27 V, 50 mA maximum.

Note 5: Can be selected with the optional remote operator.

Note 6: Effective with an output frequency range of 20 to 60 Hz.

Note 7: Storage temperature refers to temporary periods, such as during transportation.
Torque Characteristics with Inverter Operation

- Torque characteristics

The torque characteristics for the V/F pattern in the diagram below are indicated (for the Hitachi totally-enclosed, fan-cooled, four-pole motor.)

- Applicable motor: 0.4 to 1.5 kW

Diagram: Maximum torque (maximum torque boost, short time) vs. Torque (N·m) vs. Output frequency (Hz)
11.3 Terminal connection diagram

Note 1: Maximum frequency is attained at about 9.6V.

Note 2: When the arrival signal is received by a relay, absorb the surge from the relay going ON and OFF with a anti-parallel diode, etc.
11.4 Description of terminals

| Terminal designa-
<table>
<thead>
<tr>
<th>Terminal circuit</th>
<th>Description</th>
<th>Input level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main circuit terminals (N6 screw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R, S, T</td>
<td>Commercial power supply input terminals</td>
<td>Connect to FANUC phase 200 - 240 V 50, 60 Hz.</td>
</tr>
<tr>
<td>U, V, W</td>
<td>Interlock output terminals</td>
<td>Connect to three-phase equivalent single-phase motor.</td>
</tr>
<tr>
<td>Grounding terminal</td>
<td>Ground the case grounding terminal.</td>
<td></td>
</tr>
<tr>
<td>Control circuit terminals (N3 screw)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Z0N | Second acceleration/ deceleration terminal | Contact (closed): Second acceleration/deceleration | L level ≤ 0.3 V
(Note 3) E level 2.4 V Minimum impact Pulse width ≥ 50 ms |
| A0 | Frequency arrival terminal | Transistor output ON when the output frequency attains the setting frequency (DC 27 V 30 mA maximum). | |
| C0M | Common terminal | Specialized A0 common terminal (not for grounding). | |
| CF2 | Multi-speed terminals | Contact (closed): Multi-speed operation | L level ≤ 0.3 V
(Note 3) E level 2.4 V Minimum impact Pulse width ≥ 50 ms |
| | | | |
| **X** | Frequency setting power supply terminal | | DC 10 V 20 mA maximum |
| **O** | Frequency setting terminal | DC 0 - 10 V, DC 0 - 5 V (switchable with DIP switches) Input impedance: 0 - 5 V (10 kΩ-unbalanced) 0 -10 V (20 kΩ-balanced) | |
| **L** | Control common terminal | Central terminal common (not for grounding). | |
| **FV** | Forward operation/ stop terminal | Contact (closed): Forward operation Contact (open): Stop | L level ≤ 0.3 V
(Note 3) E level 2.4 V Minimum impact Pulse width ≥ 50 ms |
| **RV** | Reverse operation/ stop terminal | Contact (closed): Reverse operation Contact (open): Stop | |
| **X0** | Reset terminal | Contact (closed): Fault reset | |
| **L** | Control common terminal | Central terminal common (not for grounding). | |
| **FM** | Frequency monitor terminal | Signal for digital frequency meter: factory setting Signal for analog meter (0 mA (0 V); 1 mA full scale, lead resistance 100 Ω to 22 kΩ): setting by a remote operator | |
| **ALL** | Fault alarm terminal | Normal: ALL-AL1 (closed) Fault: ALL-AL1 (open) Power supply OFF: ALL-AL1 (open) Contact rating: AC 250 V 2.5 A (resistance load) 0.2 A (see 0.6) DC 30 V 3 A (resistance load) 0.7 A (see 0.6) |
Note 1: Relays used for control circuit terminals other than ALO-AL1 should be weak electric relays (DC 12 V, 3 mA usable).

Note 2: Stopped when FW and RV are on at the same time. (Decelerates and stops when activated during operation.)

Note 3: Input circuit

\[IL \approx 3.5 \text{mA} \]